Using weight of evidence to assess degradation potential of UVCB hydrocarbon solvents

Integr Environ Assess Manag. 2023 Jul;19(4):1120-1130. doi: 10.1002/ieam.4731. Epub 2023 Jan 23.

Abstract

Hydrocarbon solvents are a diverse group of petrochemical substances that are identified as unknown or variable composition, complex reaction products, or biological materials (UVCBs) and may contain tens of thousands of individual chemical constituents. As such, it is generally not possible to analytically resolve every chemical constituent in a hydrocarbon solvent. This, along with the low water solubility and/or high vapor pressure of constituents, precludes the use of many standardized tests designed to determine biodegradation in the environment (e.g., Organization for Economic Co-operation and Development [OECD] 309). A weight of evidence approach may be needed to reduce uncertainty to an acceptable level such that a determination on the biodegradation of the substance can be drawn. Based on the OECD 2019 weight of evidence guidance, we present a framework using various lines of evidence that can be used to evaluate the biodegradation of a UVCB solvent in a weight of evidence approach. The lines of evidence include whole substance testing, data on representative constituents, quantitative structure activity relationship (QSAR) models, and biological plausibility. Using these lines of evidence, "Hydrocarbon, C11-C14, normal alkane, isoalkane, cyclic, <2% aromatics" (EC# 926-141-6) was evaluated in a case study. Data from three whole substance tests, 43 constituents (representing 152 data points), three QSAR models and evidence of microbial degradation pathways were evaluated. Based on the available data, it is concluded that the solvent for the case study is not expected to persist in the environment. This framework sets out a real-world example of how the weight of evidence can be used to evaluate hydrocarbon solvents. While focused on persistence, similar approaches can be used to evaluate other endpoints such as bioaccumulation and toxicity. Integr Environ Assess Manag 2023;19:1120-1130. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

Keywords: Hydrocarbon; UVCB; persistence.

MeSH terms

  • Ecotoxicology*
  • Hydrocarbons*
  • Quantitative Structure-Activity Relationship
  • Risk Assessment
  • Solvents

Substances

  • Solvents
  • Hydrocarbons