Raman Snapshots of Side-Chain Dependent Polaron Dynamics in PolyThiophene Films

J Phys Chem B. 2023 Jan 19;127(2):567-576. doi: 10.1021/acs.jpcb.2c06185. Epub 2023 Jan 4.

Abstract

Photogenerated polarons in π-conjugated polymers are the precursors to free charges at donor-acceptor interfaces. Unraveling the relationship between film morphology and polaron formation is conjectured to enable efficient charge generation in organic photovoltaic devices. However, it has been challenging to track the ultrafast dynamics of polarons selectively and thus evaluate the molecular coordinates that drive charge generation in films. Using a combination of broadband femtosecond transient absorption and resonance-selective femtosecond stimulated Raman spectroscopy, here, we investigate the polaron generation dynamics exclusively in traditional crystalline poly(3-hexylthiophene) (P3HT) and its amorphous side-chain variant poly(3-(2-ethylhexyl)thiophene-2,5-diyl) (P3EHT) films. The transient Raman data unequivocally provides evidence for an initial delocalization of the polaronic states via thiophene backbone planarization in ∼100 fs while capturing the subsequent morphology-dependent cooling dynamics in a few picoseconds. Our work highlights the structural significance of crystalline morphology in generating hot-charges and thereby emphasizes the importance of side-chain engineering in designing highly efficient conjugated polymer films for hot-carrier photovoltaic devices.