Enhanced trends in spectral greening and climate anomalies across Europe

Environ Monit Assess. 2023 Jan 4;195(2):260. doi: 10.1007/s10661-022-10853-8.

Abstract

Europe witnessed a strong increase in climate variability and enhanced climate-induced extreme events, such as hot drought periods, mega heat waves, and persistent flooding and flash floods. Intensified land degradation, land use, and landcover changes further amplified the pressure on the environmental system functionalities and fuelled climate change feedbacks. On the other hand, global satellite observations detected a positive spectral greening trend-most likely as a response to rising atmospheric CO2 concentrations and global warming. But which are the engines behind such shifts in surface reflectance patterns, vegetation response to global climate changes, or anomalies in the environmental control mechanisms? This article compares long-term environmental variables (1948-2021) to recent vegetation index data (Normalized Difference Vegetation Index (NDVI), 2001-2021) and presents regional trends in climate variability and vegetation response across Europe. Results show that positive trends in vegetation response, temperature, rainfall, and soil moisture are accompanied by a strong increase in climate anomalies over large parts of Europe. Vegetation dynamics are strongly coupled to increased temperature and enhanced soil moisture during winter and the early growing season in the northern latitudes. Simultaneously, temperature, precipitation, and soil moisture anomalies are strongly increasing. Such a strong amplification in climate variability across Europe further enhances the vulnerability of vegetation cover during extreme events.

Keywords: Climate change; Climate extremes; Drought; Greening trend; Landcover change; NDVI.

MeSH terms

  • Climate Change*
  • Ecosystem
  • Environmental Monitoring*
  • Europe
  • Global Warming
  • Seasons
  • Temperature