Strain-Engineered Multilayer Epitaxial Lift-Off for Cost-Efficient III-V Photovoltaics and Optoelectronics

ACS Appl Mater Interfaces. 2023 Jan 11;15(1):1184-1191. doi: 10.1021/acsami.2c18629. Epub 2023 Jan 3.

Abstract

The efficient removal of epitaxially grown materials from their host substrate has a pivotal role in reducing the cost and material consumption of III-V solar cells and in making flexible thin-film devices. A multilayer epitaxial lift-off process is demonstrated that is scalable in both film size and in the number of released films. The process utilizes in-built, individually engineered epitaxial strain in each film to tailor the bending without the need for external layers to induce strain. Even without external support layers, the films retain good integrity after the lift-off, as evidenced by photoluminescence measurements. The films can be further processed into devices, demonstrated here with the fabrication of cm-scale solar cells using a three-layer lift-off process. Based on the included cost analysis, the solar cells are fabricated with a facile two-step process from the as-released films. The scalable multilayer lift-off process is highly cost-efficient and enables a 4-to-6-fold reduction in the cost with respect to the single-layer epitaxial lift-off process. The results are therefore significant for III-V photovoltaics and any other technologies that rely on thin-film III-V semiconductors.

Keywords: Multilayer ELO; chemical mechanical polishing; epitaxial lift-off; photoluminescence; strain-engineered MELO; time-resolved PL.