Array Microcell Method (AMCM) for Serial Electroanalysis

ChemElectroChem. 2020 Mar 2;7(5):1084-1091. doi: 10.1002/celc.201901976. Epub 2020 Jan 9.

Abstract

We describe a method for electrochemical measurement and synthesis based on the combination of a mobile micropipette and a microelectrode array, which we term the array microcell method (AMCM). AMCM has the ability to address single electrodes within a microelectrode array (MEA) and provides a simple, low-cost format to enable versatile electrochemical measurements. In AMCM, a droplet at the tip of a movable micropipette (inner diameter of 50 μm) functions as an electrochemical cell, in which the electrode area is defined by a microelectrode of the array. We also report carbon MEAs that are well suited for AMCM and are fabricated from pyrolyzed photoresist films (PPFs). PPF-MEAs with nominal electrode diameters of 5.5 μm are characterized by AMCM, standard macroscale electrochemical methods, and finite element modeling. The versatility of AMCM is demonstrated by measurement of single Pt microparticles and by electrodeposition of shapecontrolled Pt nanoparticles.

Keywords: cyclic voltammetry; microarrays; micropipettes; nanoparticles; scanning probe microscopy.