Sonic boom reflection over urban areas

J Acoust Soc Am. 2022 Dec;152(6):3323. doi: 10.1121/10.0016442.

Abstract

Sonic boom propagation over urban areas is studied using numerical simulations based on the Euler equations. Two boom waves are examined: a classical N-wave and a low-boom wave. Ten urban geometries, generated from the local climate zone classification [Stewart and Oke (2012), Bull. Am. Meteorol. Soc. 93(12), 1879-1900], are considered representative of urban forms. They are sorted into two classes, according to the aspect ratio of urban canyons. For compact geometries with a large aspect ratio, the noise levels and the peak pressure, especially for the N-wave, are highly variable between canyons. For open geometries with a small aspect ratio, these parameters present the same evolution in each urban canyon, corresponding to that obtained for isolated buildings. A statistical analysis of the noise levels in urban canyons is then performed. For both boom waves, the median of the perceived noise levels mostly differs by less than 1 dB from the value obtained for flat ground. The range of variation is greater for open geometries than for compact ones. Finally, low-frequency oscillations, associated with resonant modes of the canyons, are present for both compact and open geometries. Their amplitude, frequency and decay rate vary greatly from one canyon to another.