Mammalian Commensal Streptococci Utilize a Rare Family of Class VI Lanthipeptide Synthetases to Synthesize Miniature Lanthipeptide-type Ribosomal Peptide Natural Products

Biochemistry. 2023 Jan 17;62(2):462-475. doi: 10.1021/acs.biochem.2c00534. Epub 2022 Dec 28.

Abstract

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are natural products with remarkable chemical and functional diversities. These peptides are often synthesized as signals or antibiotics and frequently associated with quorum sensing (QS) systems. With the increasing number of available genomes, many hitherto unseen RiPP biosynthetic pathways have been mined, providing new resources for novel bioactive compounds. Herein, we investigated the underexplored biosynthetic potential of Streptococci, prevalent bacteria in mammal-microbiomes that include pathogenic, mutualistic, and commensal members. Using the transcription factor-centric genome mining strategy, we discovered a new family of lanthipeptide biosynthetic loci under the control of potential QS. By in vitro studies, we investigated the reaction of one of these lanthipeptide synthetases and found that it installs only one lanthionine moiety onto its short precursor peptide by connecting a conserved TxxC region. Bioinformatics and in vitro studies revealed that these lanthipeptide synthetases (class VI) are novel lanthipeptide synthetases with a truncated lyase, a kinase, and a truncated cyclase domain. Our data provide important insights into the processing and evolution of lanthipeptide synthetase to tailor smaller substrates. The data are important for obtaining a mechanistic understanding of the post-translational biosynthesis machinery of the growing variety of lanthipeptides.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / metabolism
  • Biological Products* / metabolism
  • Ligases* / metabolism
  • Peptides / chemistry
  • Protein Processing, Post-Translational
  • Ribosomes / metabolism

Substances

  • Ligases
  • Biological Products
  • Peptides
  • Anti-Bacterial Agents