TYRO3 promotes chemoresistance via increased LC3 expression in pancreatic cancer

Transl Oncol. 2023 Feb:28:101608. doi: 10.1016/j.tranon.2022.101608. Epub 2022 Dec 26.

Abstract

Pancreatic cancer (PC) is an aggressive malignancy with few treatment options, and improved treatment strategies are urgently required. TYRO3, a member of the TAM receptor tyrosine kinase family, is a known oncogene; however, the relationship between TYRO3 expression and PC chemoresistance remains to be elucidated. We performed gain- and loss-of-function experiments on TYRO3 to examine whether it is involved in chemoresistance in PC cells. TYRO3 knockdown decreased cell viability and enhanced apoptosis following treatment of PC cells with gemcitabine and 5-fluorouracil (5-FU). In contrast, no such effects were observed in TYRO3-overexpressing PC cells. It is known that autophagy is associated with cancer chemoresistance. We then examined effects of TYRO3 on autophagy in PC cells. TYRO3 overexpression increased LC3 mRNA levels and induced LC3 puncta in PC cells. Inhibition of autophagy by chloroquine mitigated cell resistance to gemcitabine and 5-FU. In a xenograft mouse model, TYRO3 silencing significantly increased sensitivity of the cells to gemcitabine and 5-FU. To further investigate the involvement of autophagy in patients with PC, we immunohistochemically analyzed LC3 expression in the tissues of patients who underwent pancreatectomy and compared it with disease prognosis and TYRO3 expression. LC3 expression was negatively and positively correlated with prognosis and TYRO3 expression, respectively. Furthermore, LC3- and TYRO3-positive patients had a significantly worse prognosis among patients with PC who received chemotherapy after recurrence. These results indicated that the TYRO3-autophagy signaling pathway confers PC resistance to gemcitabine and 5-FU, and could be a novel therapeutic target to resolve PC chemoresistance.

Keywords: Autophagy; Chemoresistance; Pancreatic cancer; Receptor tyrosine kinase; TYRO3.