Addressing the Origin of Single-Atom-Activated Supports Monitored by Electrochemiluminescence

ACS Appl Mater Interfaces. 2023 Jan 11;15(1):1610-1618. doi: 10.1021/acsami.2c19985. Epub 2022 Dec 28.

Abstract

Currently, much attention has been paid to the efforts to stabilize and regulate single atoms through supports to obtain decent electrocatalytic behaviors. However, little concern was given to the effect of single atoms on modulating the electronic structure of supports, despite the catalytic activities and large quantities of supports in the catalytic reactions. Herein, we have localized Ru single atoms onto two-dimensional layered double hydroxide (NiFe-LDH) and studied the role of Ru single atoms in adjusting the electronic structure of the NiFe-LDH support. Spin polarization of 3d electrons for Fe and electron redistribution in NiFe-LDH were effectively modulated through the interaction between Ru single atoms and NiFe-LDH. As a result, the luminol redox reaction and reactive oxygen revolution were simultaneously promoted by Ru single-atom-modulated NiFe-LDH, manifested as boosted electrochemiluminescence (ECL). Therefore, we have provided valid information to reveal the regulation effect of single atoms on the spin state and electronic structure of the supports. It is anticipated that our strategy may arouse wide interest in manipulating single-atom-modulated supports.

Keywords: electrocatalytic reaction; electrochemiluminescence; electronic structure; single atom; support.