Metabolic engineering of Rhodotorula toruloides for resveratrol production

Microb Cell Fact. 2022 Dec 24;21(1):270. doi: 10.1186/s12934-022-02006-w.

Abstract

Background: Resveratrol is a plant-derived phenylpropanoid with diverse biological activities and pharmacological applications. Plant-based extraction could not satisfy ever-increasing market demand, while chemical synthesis is impeded by the existence of toxic impurities. Microbial production of resveratrol offers a promising alternative to plant- and chemical-based processes. The non-conventional oleaginous yeast Rhodotorula toruloides is a potential workhorse for the production of resveratrol that endowed with an efficient and intrinsic bifunctional phenylalanine/tyrosine ammonia-lyase (RtPAL) and malonyl-CoA pool, which may facilitate the resveratrol synthesis when properly rewired.

Results: Resveratrol showed substantial stability and would not affect the R. toruloides growth during the yeast cultivation in flasks. The heterologus resveratrol biosynthesis pathway was established by introducing the 4-coumaroyl-CoA ligase (At4CL), and the stilbene synthase (VlSTS) from Arabidopsis thaliana and Vitis labrusca, respectively. Next, The resveratrol production was increased by 634% through employing the cinnamate-4-hydroxylase from A. thaliana (AtC4H), the fused protein At4CL::VlSTS, the cytochrome P450 reductase 2 from A. thaliana (AtATR2) and the endogenous cytochrome B5 of R. toruloides (RtCYB5). Then, the related endogenous pathways were optimized to affect a further 60% increase. Finally, the engineered strain produced a maximum titer of 125.2 mg/L resveratrol in YPD medium.

Conclusion: The non-conventional oleaginous yeast R. toruloides was engineered for the first time to produce resveratrol. Protein fusion, co-factor channeling, and ARO4 and ARO7 overexpression were efficient for improving resveratrol production. The results demonstrated the potential of R. toruloides for resveratrol and other phenylpropanoids production.

Keywords: Cell factory; Metabolic engineering; Resveratrol; Rhodotorula toruloides.

MeSH terms

  • Arabidopsis* / genetics
  • Metabolic Engineering / methods
  • Plants
  • Resveratrol / metabolism
  • Rhodotorula* / genetics
  • Rhodotorula* / metabolism
  • Yeasts

Substances

  • Resveratrol

Supplementary concepts

  • Rhodotorula toruloides