A comprehensive review of the synthesis strategies, properties, and applications of transparent wood as a renewable and sustainable resource

Sci Total Environ. 2023 Mar 15:864:161067. doi: 10.1016/j.scitotenv.2022.161067. Epub 2022 Dec 22.

Abstract

The uncertainties of the environment and the emission levels of nonrenewable resources have compelled humanity to develop sustainable energy savers and sustainable materials. One of the most abundant and versatile bio-based structural materials is wood. Wood has several promising advantages, including high toughness, low thermal conductivity, low density, high Young's modulus, biodegradability, and non-toxicity. Furthermore, while wood has many ecological and structural advantages, it does not meet optical transparency requirements. Transparent wood is ideal for use in various industries, including electronics, packaging, automotive, and construction, due to its high transparency, haze, and environmental friendliness. As a necessary consequence, current research on developing fine wood is summarized in this review. This review begins with an explanation of the history of fine wood. The concept and various synthesis strategies, such as delignification, refractive index measurement methods, and transparent lumber polymerization, are discussed. Approaches and techniques for the characterization of transparent wood are outlined, including microscopic, Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analysis. Furthermore, the characterization, physical properties, mechanical properties, optical properties, and thermal conductivity of transparent wood are emphasized. Eventually, a brief overview of the various applications of fine wood is presented. The present review summarized the first necessary actions toward future transparent wood applications.

Keywords: Mechanical properties; Optical properties; Physical properties; Synthesis strategies; Transparent wood.

Publication types

  • Review