Performance of the SABAT Neutron-Based Explosives Detector Integrated with an Unmanned Ground Vehicle: A Simulation Study

Sensors (Basel). 2022 Dec 19;22(24):9996. doi: 10.3390/s22249996.

Abstract

The effective and safe detection of illicit materials, explosives in particular, is currently of growing importance taking into account the geopolitical situation and increasing risk of a terrorist attack. The commonly used methods of detection are based predominantly on metal detectors and georadars, which show only the shapes of the possible dangerous objects and do not allow for exact identification and risk assessment. A supplementary or even alternative method may be based on neutron activation analysis, which provides the possibility of a stoichiometric analysis of the suspected object and its non-invasive identification. One such sensor is developed by the SABAT collaboration, with its primary application being underwater threat detection. In this article, we present performance studies of this sensor, integrated with a mobile robot, in terms of the minimal detectable quantity of commonly used explosives in different environmental conditions. The paper describes the functionality of the used platform considering electronics, sensors, onboard computing power, and communication system to carry out manual operation and remote control. Robotics solutions based on modularized structures allow the extension of sensors and effectors that can significantly improve the safety of personnel as well as work efficiency, productivity, and flexibility.

Keywords: mobile robot; neutron activation analysis; non-destructive sensors; γ spectroscopy.

MeSH terms

  • Computer Simulation
  • Electronics
  • Explosive Agents*
  • Neutrons
  • Robotics*

Substances

  • Explosive Agents

Grants and funding

This work was supported by the EU Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No. 101006726 and grants U1U/P06/NW/02.07 and U1U/P07/NO/17.13 from the DigiWorld and Anthropocene Priority Research Areas under the Strategic Programme Excellence Initiative at the Jagiellonian University. We acknowledge the support from the Polish National Centre for Research and Development through Grant No. LIDER/17/0046/L-7/15/NCBR/2016 and from the Ministry of Education and Science through Grant No. K/PMI/000477. Research activities were also co-financed by research work no. 55.2022489. PL at Military Institute of Armoured and Automotive Technology.