Design and Fabrication of a Novel Wheel-Ring Triaxial Gyroscope

Sensors (Basel). 2022 Dec 18;22(24):9978. doi: 10.3390/s22249978.

Abstract

This paper presents a new type of three-axis gyroscope. The gyroscope comprises two independent parts, which are nested to further reduce the structure volume. The capacitive drive was adopted. The motion equation, capacitance design, and spring design of a three-axis gyroscope were introduced, and the corresponding formulas were derived. Furthermore, the X/Y driving frequency of the gyroscope was 5954.8 Hz, the Y-axis detection frequency was 5774.5 Hz, and the X-axis detection frequency was 6030.5 Hz, as determined by the finite element simulation method. The Z-axis driving frequency was 10,728 Hz, and the Z-axis sensing frequency was 10,725 Hz. The MEMS gyroscope's Z-axis driving mode and the sensing mode's frequency were slightly mismatched, so the gyroscope demonstrated a larger bandwidth and higher Z-axis mechanical sensitivity. In addition, the structure also has good Z-axis impact resistance. The transient impact simulation of the gyroscope structure showed that the maximum stress of the sensitive structure under the impact of 10,000 g@5 ms was 300.18 Mpa. The gyroscope was produced by etching silicon wafers in DRIE mode to obtain a high aspect ratio structure, tightly connected to the glass substrate by silicon/glass anode bonding technology.

Keywords: capacitance formula; micro-electro-mechanical system (MEMS) gyroscope; motion equation; operating mode; resonant ring.