Defect Severity Identification for a Catenary System Based on Deep Semantic Learning

Sensors (Basel). 2022 Dec 16;22(24):9922. doi: 10.3390/s22249922.

Abstract

A variety of Chinese textual operational text data has been recorded during the operation and maintenance of the high-speed railway catenary system. Such defect text records can facilitate defect detection and defect severity analysis if mined efficiently and accurately. Therefore, in this context, this paper focuses on a specific problem in defect text mining, which is to efficiently extract defect-relevant information from catenary defect text records and automatically identify catenary defect severity. The specific task is transformed into a machine learning problem for defect text classification. First, we summarize the characteristics of catenary defect texts and construct a text dataset. Second, we use BERT to learn defect texts and generate word embedding vectors with contextual features, fed into the classification model. Third, we developed a deep text categorization network (DTCN) to distinguish the catenary defect level, considering the contextualized semantic features. Finally, the effectiveness of our proposed method (BERT-DTCN) is validated using a catenary defect textual dataset collected from 2016 to 2018 in the China Railway Administration in Chengdu, Lanzhou, and Hengshui. Moreover, BERT-DTCN outperforms several competitive methods in terms of accuracy, precision, recall, and F1-score value.

Keywords: catenary system; deep learning; defect severity classification; pre-trained language model; text mining.

MeSH terms

  • China
  • Data Mining
  • Humans
  • Machine Learning
  • Semantics*