Colorful Luminescence of Conjugated Polyelectrolytes Induced by Molecular Weight

Polymers (Basel). 2022 Dec 8;14(24):5372. doi: 10.3390/polym14245372.

Abstract

Due to their distinctive intrinsic advantages, the nanoaggregates of conjugated polyelectrolytes (CPEs) are fascinating and attractive for various luminescence applications. Generally, the emission luminescence of CPEs is determined by the conjugated backbone structure, i.e., different conjugated backbones of CPEs produce emission luminescence with different emission wavelength bands. Here, we polymerized the bis(boronic ester) of benzothiadiazole and an alkyl sulfonate sodium-substituted dibromobenzothiatriazole to provide PBTBTz-SO3Na with different molecular weights via controlling the ratio of the monomer and the catalyst. Theoretically, the CPEs with the same molecular structure usually display similar photoelectronic performances. However, the resulting PBTBTz-SO3Na reveal a similar light absorption property, but different luminescence. The higher molecular weight is, the stronger the fluorescence intensity of PBTBTz-SO3Na that occurs. PBTBTz-SO3Na with different molecular weights have different colors of luminescence. It is well known that the molecular aggregates often led to weaker luminescent properties for most of the conjugated polymers. However, PBTBTz-SO3Na exhibits a higher molecular weight with an increasing molecular chain aggregation, i.e., the nanoaggregates of PBTBTz-SO3Na are beneficial to emission luminescence. This work provides a new possible chemical design of CPEs with a controllable, variable luminescence for further optoelectronics and biomedicine applications.

Keywords: aggregates; conjugated polyelectrolytes; luminescence; optoelectronic properties.

Grants and funding

This work was supported by National Natural Science Foundation of China (51703045), Zhejiang Provincial Natural Science Foundation of China (Y21E030023). The author would like to thank Hangzhou Dianzi University for the funding KYS205617011 to support this research.