Nanoscale morphology and thermal properties of low insertion loss fiber Bragg gratings produced using the phase mask technique and a single femtosecond laser pulse

Opt Express. 2022 Dec 19;30(26):47361-47374. doi: 10.1364/OE.476872.

Abstract

Fiber Bragg gratings with a very low insertion loss are inscribed using the phase mask technique and a single infrared (800 nm) femtosecond laser pulse. The morphology of the resultant light-induced structural changes in the Ge-doped silica fiber (SMF-28) is analyzed using scanning electron microscopy. The electron microscopy images reveal that each Bragg grating period incorporates an elongated micropore embedded in a region of homogeneous material modification. The Bragg wavelength drift and reflectivity of fiber Bragg gratings produced with single pulses having the same energy but different duration (80 fs and 350 fs) are monitored for 1000 hours in the course of isothermal annealing at 1000°C. The annealing data demonstrate that both the isothermal Bragg wavelength drift and the decrease in the reflectivity of the fiber Bragg gratings under test are statistically slower for the 350 fs inscription pulses.