On-Site Application of Solar-Activated Membrane (Cr-Mn-Doped TiO2@Graphene Oxide) for the Rapid Degradation of Toxic Textile Effluents

Membranes (Basel). 2022 Nov 23;12(12):1178. doi: 10.3390/membranes12121178.

Abstract

Solar-activated water treatment has become an emerging research field due to its eco-friendly nature and the economic feasibility of green photocatalysis. Herein, we synthesized promising, cost-effective, and ultralong-semiconductor TiO2 nanowires (NW), with the aim to degrade toxic azo dyes. The band gap of TiO2 NW was tuned through transition metals, i.e., chromium (Cr) and manganese (Mn), and narrowed by conjugation with high surface area graphene oxide (GO) sheets. Cr-Mn-doped TiO2 NWs were chemically grafted onto GO nanosheets and polymerized with sodium alginate to form a mesh network with an excellent band gap (2.6 eV), making it most suitable to act as a solar photocatalytic membrane. Cr-Mn-doped TiO2 NW @GO aerogels possess high purity and crystallinity confirmed by Energy Dispersive X-ray spectroscopy and X-ray diffraction pattern. A Cr-Mn-doped TiO2 NW @GO aerogels membrane was tested for the photodegradation of Acid Black 1 (AB 1) dye. The synthesized photocatalytic membrane in the solar photocatalytic reactor at conditions optimized by response surface methodology (statistical model) and upon exposure to solar radiation (within 180 min) degraded 100% (1.44 kg/m3/day) AB 1dye into simpler hydrocarbons, confirmed by the disappearance of dye color and Fourier transform infrared spectroscopy. An 80% reduction in water quality parameters defines Cr-Mn-doped TiO2 NW @GO aerogels as a potential photocatalytic membrane to degrade highly toxic pollutants.

Keywords: TiO2 nanowire; dye degradation; graphene oxide; photocatalysis; solar-activated membrane.

Grants and funding

The authors are thankful to the National Natural Science Foundation of China (No. 22050410281).