Improving the Performance of Solution-Processed Quantum Dot Light-Emitting Diodes via a HfOx Interfacial Layer

Materials (Basel). 2022 Dec 15;15(24):8977. doi: 10.3390/ma15248977.

Abstract

One of the major obstacles in the way of high-performance quantum dot light-emitting diodes (QLEDs) is the charge imbalance arising from more efficient electron injection into the emission layer than the hole injection. In previous studies, a balanced charge injection was often achieved by lowering the electron injection efficiency; however, high performance next-generation QLEDs require the hole injection efficiency to be enhanced to the level of electron injection efficiency. Here, we introduce a solution-processed HfOx layer for the enhanced hole injection efficiency. A large amount of oxygen vacancies in the HfOx films creates gap states that lower the hole injection barrier between the anode and the emission layer, resulting in enhanced light-emitting characteristics. The insertion of the HfOx layer increased the luminance of the device to 166,600 cd/m2, and the current efficiency and external quantum efficiency to 16.6 cd/A and 3.68%, respectively, compared with the values of 63,673 cd/m2, 7.37 cd/A, and 1.64% for the device without HfOx layer. The enhanced light-emitting characteristics of the device were elucidated by X-ray photoelectron, ultra-violet photoelectron, and UV-visible spectroscopy. Our results suggest that the insertion of the HfOx layer is a useful method for improving the light-emitting properties of QLEDs.

Keywords: light−emitting diodes; quantum dots; solution process.

Grants and funding

This work was supported by a grant from Kyung Hee University (KHU-20181299).