Preparation of Flexible Liquid Crystal Films with Broadband Reflection Based on PD&SLC

Materials (Basel). 2022 Dec 13;15(24):8896. doi: 10.3390/ma15248896.

Abstract

A simple and efficient method for the preparation of a film with flexible characteristic and selective reflection of near-infrared light is proposed. Based on the coexistence system (PD&SLC) of polymer dispersed liquid crystals (PDLC) and polymer stabilized liquid crystals (PSLC), it combines the flexibility of PDLC with the selectively reflection of PSLC. Innovative use of step-by-step light curing to achieve microstructural differences in the three-dimensional orientation of the material is proposed. That is, the difference between PDLC and PSLC in the planar orientation, as well as the gradient distribution of cholesteric phase liquid crystal pitch in the cell thickness direction, is observed. While realizing the flexibility of the material, the function of broadening the reflection bandwidth is fulfilled. This method of preparing liquid crystal films is expected to have great potential for applications, such as flexible smart windows, infrared light shielding, and sensors.

Keywords: PD&SLC; broadband; cholesteric liquid crystal; flexible film.