Anodal-TDCS over Left-DLPFC Modulates Motor Cortex Excitability in Chronic Lower Back Pain

Brain Sci. 2022 Dec 2;12(12):1654. doi: 10.3390/brainsci12121654.

Abstract

Chronic pain is associated with abnormal cortical excitability and increased pain intensity. Research investigating the potential for transcranial direct current stimulation (tDCS) to modulate motor cortex excitability and reduce pain in individuals with chronic lower back pain (CLBP) yield mixed results. The present randomised, placebo-controlled study examined the impact of anodal-tDCS over left-dorsolateral prefrontal cortex (left-DLPFC) on motor cortex excitability and pain in those with CLBP. Nineteen participants with CLBP (Mage = 53.16 years, SDage = 14.80 years) received 20-min of sham or anodal tDCS, twice weekly, for 4 weeks. Short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were assessed using paired-pulse Transcranial Magnetic Stimulation prior to and immediately following the tDCS intervention. Linear Mixed Models revealed no significant effect of tDCS group or time, on SICI or ICF. The interactions between tDCS group and time on SICI and ICF only approached significance. Bayesian analyses revealed the anodal-tDCS group demonstrated higher ICF and SICI following the intervention compared to the sham-tDCS group. The anodal-tDCS group also demonstrated a reduction in pain intensity and self-reported disability compared to the sham-tDCS group. These findings provide preliminary support for anodal-tDCS over left-DLPFC to modulate cortical excitability and reduce pain in CLBP.

Keywords: chronic lower back pain; excitability; motor cortex; transcranial direct current stimulation; transcranial magnetic stimulation.

Grants and funding

This research received no external funding.