Synthesis, Adsorption Isotherm and Kinetic Study of Alkaline- Treated Zeolite/Chitosan/Fe3+ Composites for Nitrate Removal from Aqueous Solution-Anion and Dye Effects

Gels. 2022 Nov 29;8(12):782. doi: 10.3390/gels8120782.

Abstract

In the present study, alkaline-treated zeolite/chitosan/Fe3+ (ZLCH-Fe) composites were prepared and analyzed using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and pH of zero point of charge (pHzpc) to remove nitrates from water. The process was carried out using an adsorption method with a varied initial pH, adsorbent dosage, initial nitrate concentration and contact time. The pHzpc demonstrated that the ZLCH-Fe surface had a positive charge between 2 and 10, making it easier to capture the negative charge of nitrate. However, the optimal pH value is 7. After 270 min, the maximum adsorption capacity and percent removal reached 498 mg/g and 99.64%, respectively. Freundlich and pseudo-second-order were fitted to the adsorption isotherm and kinetic models, respectively. An evaluation was conducted on the effects of anions-SO42- and PO43--and dyes-methylene blue (MB) and acid red 88 (AR88)-upon nitrate removal. The results indicated that the effect of the anion could be inhibited, in contrast to dye effects. However, the optimal pH values were changed to 10 for MB and 2 for AR88, resulting in a hydrogel formation. This might be indicated by the protonation of hydroxyl and amino groups resulting from a chitosan nitrate reaction in the AR88 solution.

Keywords: Fe3+; adsorption; chitosan; nitrate removal; zeolite.

Grants and funding

This research received no external funding.