Salt-Assisted Low-Temperature Growth of 2D Bi2 O2 Se with Controlled Thickness for Electronics

Small. 2023 Mar;19(10):e2206648. doi: 10.1002/smll.202206648. Epub 2022 Dec 20.

Abstract

Bi2 O2 Se is the most promising 2D material due to its semiconducting feature and high mobility, making it propitious channel material for high-performance electronics that demands highly crystalline Bi2 O2 Se at low-growth temperature. Here, a low-temperature salt-assisted chemical vapor deposition approach for growing single-domain Bi2 O2 Se on a millimeter scale with thicknesses of multilayer to monolayer is presented. Because of the advantage of thickness-dependent growth, systematical scrutiny of layer-dependent Raman spectroscopy of Bi2 O2 Se from monolayer to bulk is investigated, revealing a redshift of the A1g mode at 162.4 cm-1 . Moreover, the long-term environmental stability of ≈2.4 nm thick Bi2 O2 Se is confirmed after exposing the sample for 1.5 years to air. The backgated field effect transistor (FET) based on a few-layered Bi2 O2 Se flake represents decent carrier mobility (≈287 cm2 V-1 s-1 ) and an ON/OFF ratio of up to 107 . This report indicates a technique to grow large-domain thickness controlled Bi2 O2 Se single crystals for electronics.

Keywords: 2D materials; Bi 2O 2Se, field-effect transistors; millimeter-size single crystals; salt-assisted chemical vapor deposition (CVD); stability.