Introducing Circulating Vasculature-Related Transcripts as Biomarkers in Coronary Artery Disease

Mol Diagn Ther. 2023 Mar;27(2):243-259. doi: 10.1007/s40291-022-00622-1. Epub 2022 Dec 20.

Abstract

Background: Atherosclerotic plaque is considered the hallmark of atherosclerotic lesions in coronary atherosclerosis (CAS), the primary pathogenesis in coronary artery disease (CAD), which develops and progresses through a complex interplay between immune cells, vascular cells, and endothelial shear stresses. Early diagnosis of CAS is critical for avoiding plaque rupture and sudden death. Therefore, identifying new CAD biomarkers linked to vessel wall functions, such as RNA molecules with their distinct signature, is a promising development for these patients. With this rationale, the present study investigated the expression level of the vascular-related RNA transcripts (lncRNA ANRIL, miRNA-126-5p, CDK4, CDK6, TGF-β, E-cadherin, and TNF-α) implicated in the cellular vascular function, proliferation, and inflammatory processes.

Methods: A case-control study design with a total of 180 subjects classified participants into two groups; CAD and control groups. The relative expression levels of the seven transcripts under study-selected using online bioinformatics tools and current literature-were assessed in the plasma of all study participants using RT-qPCR. Their predictive significance testing, scoring of disease prioritization, enrichment analysis, and the miRNA-mRNA regulatory network was investigated.

Results: The relative expression levels of all seven of the circulating vascular-related transcripts under study were statistically significant between CAD patients and controls. Receiver operating characteristic (ROC) analysis results indicated the statistical significance of all the transcripts under study with CDK4 showing the highest area under the curve (AUC) equivalent to 0.91, followed by E-cadherin (0.90), miRNA-126-5p (0.83), ANRIL (0.82), TNF-α (0.63), TGF-β (0.62), and CDK6 (0.59), in descending order. A strong association was detected between most of the transcripts studied in CAD patients with a significant Spearman's correlation coefficient with a two-tailed significance of p < 0.001. Network analysis revealed a strong relationship between the five circulating vasculature transcripts studied and their target miRNAs and miR-126-5p, but not for ANRIL.

Conclusion: The seven circulating vascular-related RNA transcripts under study could serve as potential CAD biomarkers, reflecting the cellular vascular function, proliferation, and inflammatory processes in CAD patients. Therefore, blood transcriptome analysis opens new frontiers for the non-invasive diagnosis of CAD.

MeSH terms

  • Biomarkers
  • Case-Control Studies
  • Coronary Artery Disease* / diagnosis
  • Coronary Artery Disease* / genetics
  • Humans
  • MicroRNAs* / genetics
  • Plaque, Atherosclerotic*
  • Transforming Growth Factor beta
  • Tumor Necrosis Factor-alpha

Substances

  • Tumor Necrosis Factor-alpha
  • MicroRNAs
  • Biomarkers
  • Transforming Growth Factor beta
  • MIRN126 microRNA, human