Propagation of Gaussian vortex beams in electromagnetically induced transparency media

Opt Express. 2022 Nov 21;30(24):43426-43438. doi: 10.1364/OE.472845.

Abstract

Electromagnetically induced transparency (EIT) is an important phenomenon in quantum optics, and has a wide range of applications in the fields of quantum information processing and quantum precision metrology. Recently, with the rapid progress of the generation and detection of structured light, the EIT with structured light has attracted enormous interests and offers new and novel functionalities and applications. Here, we theoretically study the propagation and evolution of Gaussian vortex beams, a typical type of structured light, in an EIT medium with Λ-type three-level atoms. Based on the generalized Huygens-Fresnel principle, we derive the analytical expressions of fully and partially coherent Gaussian vortex beams propagating in the EIT medium, and study the evolution of the intensity and phase distributions of the beams and their dependencies on parameters such topological charge, coherence length, Rabi frequency, etc. It is shown that both the fully and partially coherent Gaussian vortex beams undergo focusing and diverging periodically during propagation. The phase singularity of the fully coherent beam keeps unchanged, while the phase singularity of the partially coherent beam experiences splitting and recombination periodically. In addition, new phase singularities with opposite topological charge are generated in the latter case. Our results not only advance the study of the interaction between structured light and coherent media, but also pave the avenue for manipulating structured light via EIT.