Narrow-Bandwidth Blue-Emitting Ag-Ga-Zn-S Semiconductor Nanocrystals for Quantum-Dot Light-Emitting Diodes

J Phys Chem Lett. 2022 Dec 29;13(51):11857-11863. doi: 10.1021/acs.jpclett.2c03437. Epub 2022 Dec 15.

Abstract

I-III-VI type semiconductor nanocrystals (NCs) have attracted considerable attention in the display field. Herein, we realized the synthesis of narrow-bandwidth blue-emitting Ag-Ga-Zn-S (AGZS) NCs via a facile one-pot method. Intriguingly, the Ag/Zn feeding ratio and Ag/Ga feeding ratio are crucial for the realization of narrow-bandwidth AGZS NCs. By choosing a Ag/Zn feeding ratio of 4:1 and Ag/Ga feeding ratio of 1:8, AGZS NCs demonstrate a typical blue emission at 470 nm with a narrow full width at half-maximum (fwhm) of 48 nm, which is mainly generated from the band-to-hole recombination rather than the donor-acceptor pair (DAP) recombination. Furthermore, a solution-processed quantum-dot light-emitting device based on AGZS NCs exhibits a narrow electroluminescent bandwidth of 53 nm and high luminance over 123.1 cd m-2, as well as a high external quantum efficiency (EQE) of 0.40%. Our work highlights AGZS NCs with high color purity as an important candidate for blue-light-emitting devices.