Metalating 5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY): Understanding the Denticity and Speciation of Complexes of the ROY Anion

Inorg Chem. 2022 Dec 26;61(51):20785-20792. doi: 10.1021/acs.inorgchem.2c02629. Epub 2022 Dec 15.

Abstract

5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY) is considered to be the most crystalline polymorphic organic molecule discovered to date with 12 fully characterized crystal structures present in the Cambridge Structural Database (CSD). However, metal complexes of ROY have not previously been described. Here, we explore the synthetic chemistry of ROY (denoted as H-ROY hereafter for the purpose of our study) and demonstrate that it can be deprotonated using either NaH or KH and that the resulting sodium and potassium salts of H-ROY can be cleanly isolated. Furthermore, we introduce two new metal complexes of the ROY anion (ROY-) with Co(II) and Ni(II) cations, formed by the reaction of the sodium salt of ROY, Na(ROY), with the respective transition-metal chloride salts. Solid-state X-ray diffraction studies confirm the presence of Co(II) or Ni(II) centers, with the ROY- ligand in a 1:2 ratio forming neutral trinuclear clusters of the forms [Co3ROY6] (Co-ROY) and [Ni3ROY6] (Ni-ROY) in both cases. Here, the ROY- moiety interacts with the metal center through the anionic N atom, an O atom of the -NO2 group, and the N atom of the -CN group. IR and electronic absorption spectroscopies reveal the influence of the Co(II) and Ni(II) centers on the properties of the complexes. Taken together, our results show that the metal complexes of the H-ROY proligand can be prepared with late 3d transition metals. The results of these structural chemistry studies may contribute to resolving polymorphism in H-ROY and related compounds.

MeSH terms

  • Anions
  • Coordination Complexes* / chemistry
  • Metals / chemistry
  • Salts
  • Sodium
  • Transition Elements*

Substances

  • Coordination Complexes
  • Salts
  • Metals
  • Transition Elements
  • Anions
  • Sodium