Coordination and Spin States in Fe+(C2H2)n Complexes Studied with Selected-Ion Infrared Spectroscopy

J Phys Chem A. 2022 Dec 29;126(51):9680-9690. doi: 10.1021/acs.jpca.2c07556. Epub 2022 Dec 14.

Abstract

Fe+(acetylene)n ion-molecule complexes are produced in a supersonic molecular beam with pulsed laser vaporization. These ions are mass selected and studied with infrared photodissociation spectroscopy in the C-H stretching region, complemented by computational chemistry calculations. All C-H stretch vibrations are shifted to frequencies lower than the vibrations of isolated acetylene because of the charge transfer that occurs between the metal ion and the molecules. Complexes in the size range of n = 1-4 are found to have structures with individual acetylene molecules bound to the core metal ion via cation-π interactions. The coordination is completed with four ligands in a structure close to a distorted tetrahedron. Larger complexes in the range of n = 5-8 have external acetylene molecules solvating this n = 4 core ion via CH-π bonding to inner-shell ligands. DFT computations predict that quartet spin states are more stable for all complex sizes, but infrared spectra for quartet and doublet spin states are quite similar, precluding definitive determination of the spin states. There is no evidence for any of these complexes having acetylenes coupled into reacted structures. This is consistent with computed thermochemistry, which finds significant activation barriers to such reactions.