Reciprocating Oscillation of a Floating Ferrofluid Marble Triggered by Magnetic Fields

Langmuir. 2022 Dec 27;38(51):16024-16033. doi: 10.1021/acs.langmuir.2c02531. Epub 2022 Dec 14.

Abstract

Liquid marbles have the potential for microfluidic transport, medical diagnostics, and chemical analysis due to their negligible stickiness, environmental independence, and excellent mobility. Here, we report a non-contact manipulation strategy to arouse a reciprocating oscillation of ferrofluid marbles floating on the water surface, which can be used as microreactors. We experimentally investigated the quantitative relationship between the oscillation behavior, the applied magnetic field parameters, and the field regulation mechanism. The variables, including the magnetic field strength, marble volume, and switching period, are vital in determining the final state. The oscillation can be separated into three stages: transitional movement, compressive deformation, and rebound, before entering the next cycle. Accordingly, we created a manipulation technique for improving the mixing of inner reactants inside this marble container by remote-controlled shaking after optimizing with an oscillation model.