3D Cold-Trap Environment Printing for Long-Cycle Aqueous Zn-Ion Batteries

Adv Mater. 2023 Mar;35(9):e2209886. doi: 10.1002/adma.202209886. Epub 2022 Dec 30.

Abstract

Zn powder (Zn-P)-based anodes are always regarded as ideal anode candidates for zinc ion batteries owing to their low cost and ease of processing. However, the intrinsic negative properties of Zn-P-based anodes such as easy corrosion and uncontrolled dendrite growth have limited their further applications. Herein, a novel 3D cold-trap environment printing (3DCEP) technology is proposed to achieve the MXene and Zn-P (3DCEP-MXene/Zn-P) anode with highly ordered arrangement. Benefitting from the unique inhibition mechanism of high lattice matching and physical confinement effects within the 3DCEP-MXene/Zn-P anode, it can effectively homogenize the Zn2+ flux and alleviate the Zn deposition rate of the 3DCEP-MXene/Zn-P anode during Zn plating-stripping. Consequently, the 3DCEP-MXene/Zn-P anode exhibits a superior cycling lifespan of 1400 h with high coulombic efficiency of ≈9.2% in symmetric batteries. More encouragingly, paired with MXene and Co doped MnHCF cathode via 3D cold-trap environment printing (3 DCEP-MXene/Co-MnHCF), the 3DCEP-MXene/Zn-P//3DCEP-MXene/Co-MnHCF full battery delivers high cyclic durability with the capacity retention of 95.7% after 1600 cycles. This study brings an inspired universal pathway to rapidly fabricate a reversible Zn anode with highly ordered arrangement in a cold environment for micro-zinc storage systems.

Keywords: 3D cold-trap environment printing; 3DCEP-MXene/Zn-P anodes; Zn-ion batteries; lattice matching; physical confinement effects.