Columnar Lithium Deposition Guided by Graphdiyne Nanowalls toward a Stable Lithium Metal Anode

ACS Appl Mater Interfaces. 2022 Dec 21;14(50):55700-55708. doi: 10.1021/acsami.2c18752. Epub 2022 Dec 12.

Abstract

Lithium metal is the most promising anode for lithium batteries, but the growth of lithium dendrites leads to rapid attenuation of battery capacity and a series of safety problems during the plating/stripping process. Utilization of carbon materials for improving the Li metal anode stability represents a feasible strategy; particularly, the high affinity for lithium endows graphdiyne (GDY) with a promising capability for stabilizing Li metal anodes. Herein, vertically aligned GDY nanowalls (NWs) were uniformly grown on a copper foil, which allowed for dendrite-free, columnar deposition of lithium, desired for a stable Li metal anode. The highly lithiophilic GDY NWs afforded plentiful and evenly distributed active sites for Li nucleation as well as uniform distribution of Li-ion flux for Li growth, resulting in smooth, columnar Li deposition. The resultant Li metal electrode based on the Cu-GDY NWs was able to cycle stably for 500 cycles at 1 mA cm-2 and 2 mA h cm-2 with a high Coulombic efficiency of 99.2% maintained. A symmetric battery assembled by lithium-loaded Cu-GDY NWs (Cu-GDY NWs@Li) showed a long lifespan over 1000 h at 1 mA cm-2 and 1 mA h cm-2. Furthermore, a full cell assembled by Cu-GDY NWs@Li and LiFePO4 was able to cycle stably for 200 cycles at a high current of 5 C, indicating the potential applications in practical Li metal batteries at high rates. This work demonstrated great potential of GDY-based materials toward applications in Li metal batteries of high safety and high energy density.

Keywords: columnar deposition; graphdiyne; lithium metal anodes; nanowalls; stability.