Constructing a resilient ecological network by considering source stability in the largest Chinese urban agglomeration

J Environ Manage. 2023 Feb 15:328:116989. doi: 10.1016/j.jenvman.2022.116989. Epub 2022 Dec 8.

Abstract

The dynamics of ecological sources and their impact on the resilience of ecological networks (ENs) have attracted increasing attention from both researchers and managers. Although a couple of studies have recognized the source-loss effects on network resilience, there is a knowledge gap in integrating spatiotemporal changes of the sources while constructing resilient ENs. Here, we propose the concept of dynamic stability (DS) to explore the sources' changes over a certain period and improve source identification by grading the DS in the largest urban agglomeration located in the middle reaches of the Yangtze River in China. An investigation of the five selected ecosystem service (ES) indicators in 2000, 2010, and 2018 identified 49, 54, and 68 preliminary sources, respectively, from which 11, 14, and three sources were extracted, respectively, with high, moderate, and low levels of DS, respectively. A three-tier EN was constructed by considering both the ESs and DSs of the extracted sources. The constructed network was scale-free and featured in small world in topology analysis. Moreover, a carefully designed attack test found that this EN was of good resilience as the three critical nodes that might cause a marked decay of resilience were in high or moderate DSs and were preferentially protected by the Ecological Conservation Red Line policy in China. In conclusion, the improved approach of considering the DSs of sources may help to precisely identify and protect the critical nodes threatening network resilience, which is highly desired in constructing ENs facing various rapid changes, especially in large-scale urbanized areas.

Keywords: Dynamic stability; Ecological networks; Ecosystem services; Resilience; Source identification; Urbanization.

MeSH terms

  • China
  • Cities
  • Conservation of Natural Resources
  • Ecosystem*
  • Rivers
  • Urbanization