Temperature-Dependent Polymorphism and Phase Transformation of Friction Transferred PLLA Thin Films

Polymers (Basel). 2022 Dec 4;14(23):5300. doi: 10.3390/polym14235300.

Abstract

Poly(L-lactic acid) (PLLA) thin films with a highly oriented structure, successfully prepared by a fast friction transfer technique, were investigated mainly on the basis of synchrotron radiation wide-angle X-ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FTIR). The crystalline structure of the highly oriented PLLA film was remarkably affected by friction transfer temperatures, which exhibited various crystal forms in different friction temperature regions. Interestingly, metastable β-form was generated at all friction transfer temperatures (70-140 °C) between Tg and Tm, indicating that fast friction transfer rate was propitious to the formation of β-form. Furthermore, the relative content among β-, α'-, and α-forms at different friction temperatures was estimated by WAXD as well as FTIR spectroscopy. In situ temperature-dependent WAXD was applied to reveal the complicated phase transition behavior of PLLA at a friction transfer temperature of 100 °C. The results illustrated that the contents of β- and α'-forms decreased in turn, whereas the α-form increased in content due to partially melt-recrystallization or crystal perfection. Moreover, by immersing into a solvent of acetone, β-, α'-form were transformed into stable α-crystalline form directly as a consequence. The highly oriented structure was maintained with the chain perfectly parallel to friction transfer direction after acetone treatment, evidenced by polarized FTIR and polarized optical microscopy (POM) measurements.

Keywords: friction transfer technique; highly oriented PLLA film; phase transition; β-form.