Investigation of the Water Damage Resistance and Storability of a SEBS-Modified Cold-Patching Asphalt Mixture

Polymers (Basel). 2022 Nov 29;14(23):5191. doi: 10.3390/polym14235191.

Abstract

At present, achieving good storability and water damage resistance remains challenging for cold-patching asphalt mixtures (CAMs). To address this issue, this study selects styrene-ethylene-butadiene-styrene copolymer (SEBS) and diesel as a modifier and diluent, respectively, to improve the water stability and storability of CAMs. The diesel oil content is determined through the Brookfield rotational viscosity test, and the modifier content is obtained through the Marshall stability test. With the empirical formula method, paper trail test, and modified Marshall test, mixed designs of CAMs modified with and without SEBS are established to determine the best cold-patching asphalt content. On this basis, the modification effect of SEBS is verified by comparing the test results of the modified and unmodified CAMs, and the water stability and Marshall stability tests are conducted before and after CAM storage, respectively. Results show that the optimum contents of SEBS and diesel oil are 7.5% and 40% of the base asphalt weight, respectively, and the best modified asphalt content is 4.6% of the mineral material weight in CAM. The Marshall residual stability and freeze-thaw splitting strength ratio of the 7.5% SEBS-modified CAM are increased by 20.1% and 15.7%, respectively, relative to the unmodified CAM, and the storage performance requirement of at least two months can be guaranteed.

Keywords: CAM; SEBS; mix design; storability; water stability.