Investigation of Bioactive Components in New Resistant Hungarian Tomato Hybrids

Plants (Basel). 2022 Dec 6;11(23):3408. doi: 10.3390/plants11233408.

Abstract

The aim of the present work was to evaluate the influence of genetic impact on the content of some characteristic secondary metabolites in tomato fruits. The study was conducted to screen 14 different tomato genotypes for antioxidant capacity and quality attributes (polyphenols, tocopherols, carotenoids, vitamin C) to select the genetic lines with high biological value, multiple disease resistance, and high yield capacity for further usage in crop improvement programs. Significant differences were found among the different hybrids and cultivation seasons for the phytochemical content of the fruits. The varieties developed by breeding to increase their resistance were found to differ significantly. During a 3-year cultivation experiment, the level of lycopene in freshly harvested fruits ranged between 10.38 and 63.23 mg.kg-1 fwt for outdoor-cultivated Naik114 and Naik352, respectively. As for β-carotene, its content varied between 0.49 mg.kg-1 for Unorosso and 11.66 mg.kg-1 for Cherrola F1. The highest level of vitamin C (702.59 mg.kg-1) was recorded for Cherrola F1, while the lowest level (1.36.86 mg.kg-1) was determined in fruits of Unorosso. Neither polyphenol nor vitamin C showed positive correlation with antioxidant activity. In the three cultivation seasons, the highest concentration of polyphenols (579.19-804.12 mg.kg-1 fwt) was determined in fruits of outdoor-cultivated Cherolla F1 variety. The α- and γ-tocopherol content varied between 2.56 and 18.99 mg.kg-1, and 0.28 and 9.35 mg.kg-1, respectively, in fresh tomato fruit. Among the newly bred resistant varieties, the ZKI114 variety was proved to have outstanding features concerning the amounts of the bioactive components.

Keywords: bioactive metabolites; growing technology; resistance; tomato.

Grants and funding

This research received no external funding.