Three-Dimensional Printed Polyamide 12 (PA12) and Polylactic Acid (PLA) Alumina (Al2O3) Nanocomposites with Significantly Enhanced Tensile, Flexural, and Impact Properties

Nanomaterials (Basel). 2022 Dec 2;12(23):4292. doi: 10.3390/nano12234292.

Abstract

The effect of aluminum oxide (Al2O3) nanoparticles (NPs) as a reinforcing agent of Polyamide 12 (PA12) and Polylactic acid (PLA) in fused filament fabrication (FFF) three-dimensional printing (3DP) is reported herein for the first time. Alumina NPs are incorporated via a melt-mixing compounding process, at four different filler loadings. Neat as well as nanocomposite 3DP filaments are prepared as feedstock for the 3DP manufacturing of specimens which are thoroughly investigated for their mechanical properties. Thermogravimetric analyses (TGA) and Raman spectroscopy (RS) proved the nature of the materials. Their morphological characteristics were thoroughly investigated with scanning electron and atomic force microscopy. Al2O3 NPs exhibited a positive reinforcement mechanism at all filler loadings, while the mechanical percolation threshold with the maximum increase of performance was found between 1.0-2.0 wt.% filler loading (1.0 wt.% for PA12, 41.1%, and 56.4% increase in strength and modulus, respectively; 2.0 wt.% for PLA, 40.2%, and 27.1% increase in strength and modulus, respectively). The combination of 3DP and polymer engineering using nanocomposite PA12 and PLA filaments with low-cost filler additives, e.g., Al2O3 NPs, could open new avenues towards a series of potential applications using thermoplastic engineering polymers in FFF 3DP manufacturing.

Keywords: 3D printing (3DP); Polyamide 12 (PA12); Polylactic acid (PLA); additive manufacturing (AM); aluminum oxide (Al2O3); fused filament fabrication (FFF); mechanical properties; melt-processing; nanoparticles (NPs); polymer nanocomposites; rapid prototyping.

Grants and funding

This research received no external funding.