Assessing How Residual Errors of Scoring Functions Correlate to Ligand Structural Features

Int J Mol Sci. 2022 Nov 30;23(23):15018. doi: 10.3390/ijms232315018.

Abstract

Scoring functions (SFs) are ubiquitous tools for early stage drug discovery. However, their accuracy currently remains quite moderate. Despite a number of successful target-specific SFs appearing recently, up until now, no ideas on how to systematically improve the general scope of SFs have been formulated. In this work, we hypothesized that the specific features of ligands, corresponding to interactions well appreciated by medicinal chemists (e.g., hydrogen bonds, hydrophobic and aromatic interactions), might be responsible, in part, for the remaining SF errors. The latter provides direction to efforts aimed at the rational and systematic improvement of SF accuracy. In this proof-of-concept work, we took a CASF-2016 coreset of 285 ligands as a basis for comparison and calculated the values of scores for a representative panel of SFs (including AutoDock 4.2, AutoDock Vina, X-Score, NNScore2.0, ΔVina RF20, and DSX). The residual error of linear correlation of each SF value, with the experimental values of affinity and activity, was then analyzed in terms of its correlation with the presence of the fragments responsible for certain medicinal chemistry defined interactions. We showed that, despite the fact that SFs generally perform reasonably, there is room for improvement in terms of better parameterization of interactions involving certain fragments in ligands. Thus, this approach opens a potential way for the systematic improvement of SFs without their significant complication. However, the straightforward application of the proposed approach is limited by the scarcity of reliable available data for ligand-receptor complexes, which is a common problem in the field.

Keywords: bias of scoring functions; errors of scoring functions; fragments; ligand structural features; scoring functions.

MeSH terms

  • Drug Discovery*
  • Hydrogen Bonding
  • Ligands
  • Molecular Docking Simulation
  • Protein Binding
  • Proteins* / chemistry

Substances

  • Ligands
  • Proteins