Assessment of the Best FEA Failure Criteria (Part II): Investigation of the Biomechanical Behavior of Dental Pulp and Apical-Neuro-Vascular Bundle in Intact and Reduced Periodontium

Int J Environ Res Public Health. 2022 Nov 24;19(23):15635. doi: 10.3390/ijerph192315635.

Abstract

The aim of this study was to biomechanically assess the behavior of apical neuro-vascular bundles (NVB) and dental pulp employing Tresca, Von Mises, Pressure, S1 and S3 failure criterions in a gradual periodontal breakdown under orthodontic movements. Additionally, it was to assess the accuracy of failure criteria, correlation with the maximum hydrostatic pressure (MHP), and the amount of force safe for reduced periodontium. Based on cone-beam computed tomography, 81 3D models of the second lower premolar were subjected to 0.5 N of intrusion, extrusion, rotation, tipping, and translation. A Finite Elements Analysis (FEA) was performed. In intact and reduced periodontium apical NVB, stress (predominant in all criteria) was significantly higher than dental pulp stress, but lower than MHP. VM and Tresca displayed identical results, with added pulpal stress in translation and rotation. S1, S3 and Pressure showed stress in the apical NVB area. 0.5 N seems safe up to 8 mm periodontal breakdown. A clear difference between failure criteria for dental pulp and apical NVB cannot be proved based only on the correlation quantitative results-MHP. Tresca and VM (adequate for ductile materials) showed equivalent results with the lowest amounts of stress. The employed failure criteria must be selected based on the type of material to be analyzed.

Keywords: FEA failure criterion; dental pulp; maximum hydrostatic pressure; neuro-vascular bundle; orthodontic movement; periodontal breakdown.

MeSH terms

  • Biomechanical Phenomena
  • Dental Pulp* / diagnostic imaging
  • Finite Element Analysis
  • Models, Biological
  • Stress, Mechanical
  • Tooth Movement Techniques* / methods

Grants and funding

This research received no external funding.