Untargeted metabolism approach reveals difference of varieties of bud and relation among characteristics of grafting seedlings in Camellia oleifera

Front Plant Sci. 2022 Nov 21:13:1024353. doi: 10.3389/fpls.2022.1024353. eCollection 2022.

Abstract

Camellia oleifera is one of the essential wood oil trees in the world. C.oleifera was propagated by nurse seedling grafting. Since the scion of C.oleifera had a significant regulated effect on the properties of rootstock after grafting and impacted on the growth of the grafted seedlings, it was necessary to understand the characteristics of buds among varieties to cultivate high-quality grafted seedlings. The metabolome was thought to be a powerful tool for understanding connecting phenotype-genotype interactions, which has an important impact on plant growth and development. In this study, UPLC-MS was used to determine the metabolites of the apical buds of CL3, CL4, CL40, and CL53 spring shoots after 30 days of sprout and to measure the growth characteristics of roots and stems after grafting. Metabolomics analysis revealed 554 kinds of metabolites were significant differences among four varieties, and 29 metabolic pathways were identified to have significant changes (p< 0.05), including carboxylic acids and derivatives, fatty Acyls, organooxygen compounds, and prenol lipids metabolites. The metabolites appeared in all varieties, including phenethyl rutinoside in glycosyl compounds and hovenidulcioside A1 in terpene glycosides. Metabolite-metabolite correlations in varieties revealed more complex patterns in relation to bud and enabled the recognition of key metabolites (e.g., Glutamate, (±)Catechin, GA52, ABA, and cs-Zeatin) affecting grafting and growth ability. Each variety has a unique metabolite type and correlation network relationship. Differentiated metabolites showed different growth trends for development after grafting. Many metabolites regulate the growth of scions in buds before grafting, which plays a crucial role in the growth of seedlings after grafting. It not only regulates the growth of roots but also affects the development of this stem. Finally, those results were associated with the genetic background of each cultivar, showing that metabolites could be potentially used as indicators for the genetic background, indicating that metabolites could potentially be used as indicators for seedling growth characteristics. Together, this study will enrich the theoretical basis of seedling growth and lay a foundation for further research on the molecular regulation mechanism interaction between rootstock and scion, rootstock growth, and the development of grafted seedlings after grafting.

Keywords: Camellia oleifera; bud; metabolites; scion; ultra-performance liquid chromatography/mass spectrometry; utargeted-metabolomics.