Computational modelling of potential Zn-sensitive non-β-lactam inhibitors of imipenemase-1 (IMP-1)

J Biomol Struct Dyn. 2023 Nov;41(19):10096-10116. doi: 10.1080/07391102.2022.2153168. Epub 2022 Dec 7.

Abstract

Antibiotic resistance (AR) remains one of the leading global health challenges, mostly implicated in disease-related deaths. The Enterobacteriaceae-producing metallo-β-lactamases (MBLs) are critically involved in AR pathogenesis through Zn-dependent catalytic destruction of β-lactam antibiotics, yet with limited successful clinical inhibitors. The efficacy of relevant broad-spectrum β-lactams including imipenem and meropenem are seriously challenged by their susceptibility to the Zn-dependent carbapenemase hydrolysis, as such, searching for alternatives remains imperative. In this study, computational molecular modelling and virtual screening methods were extensively applied to identify new putative Zn-sensitive broad-spectrum inhibitors of MBLs, specifically imipenemase-1 (IMP-1) from the IBScreen database. Three ligands, STOCK3S-30154, STOCK3S-30418 and STOCK3S-30514 selectively displayed stronger binding interactions with the enzymes compared to reference inhibitors, imipenem and meropenem. For instance, the ligands showed molecular docking scores of -9.450, -8.005 and -10.159 kcal/mol, and MM-GBSA values of -40.404, -31.902 and -33.680 kcal/mol respectively against the IMP-1. Whereas, imipenem and meropenem showed docking scores of -9.038 and -10.875 kcal/mol, and MM-GBSA of -31.184 and -32.330 kcal/mol respectively against the enzyme. The ligands demonstrated good thermodynamic stability and compactness in complexes with IMP-1 throughout the 100 ns molecular dynamics (MD) trajectories. Interestingly, their binding affinities and stabilities were significantly affected in contacts with the remodelled Zn-deficient IMP-1, indicating sensitivity to the carbapenemase active Zn site, however, with non-β-lactam scaffolds, tenable to resist catalytic hydrolysis. They displayed ideal drug-like ADMET properties, thus, representing putative Zn-sensitive non-β-lactam inhibitors of IMP-1 amenable for further experimental studies.

Keywords: Antibiotic resistance; Zn-chelating inhibitors; imipenemase; metallo-β-lactamase; molecular dynamics; virtual drug design.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Imipenem / pharmacology
  • Meropenem / pharmacology
  • Microbial Sensitivity Tests
  • Molecular Docking Simulation
  • Zinc
  • beta-Lactamase Inhibitors / pharmacology
  • beta-Lactamases* / metabolism
  • beta-Lactams* / metabolism
  • beta-Lactams* / pharmacology

Substances

  • beta-Lactams
  • Meropenem
  • beta-Lactamases
  • Imipenem
  • Zinc
  • beta-Lactamase Inhibitors
  • Anti-Bacterial Agents