Replenishment in the Family of Rhenium Chalcobromides; Synthesis and Structure of Molecular {Re4S4}Br8(TeBr2)4, Dimeric [{Re4S4}Br8(TeBr2)3]2, and Polymeric {Re4S4}Br8 Compounds Based on the {Re4S4}8+ Tetrahedral Cluster Core

Inorg Chem. 2022 Dec 19;61(50):20472-20479. doi: 10.1021/acs.inorgchem.2c03178. Epub 2022 Dec 5.

Abstract

We have obtained three new rhenium(IV) chalcobromides belonging to the homologous series {Re4S4}Br8(TeBr2)n (n = 0, 3, 4): a molecular complex {Re4S4}Br8(TeBr2)4 (1), a dimeric complex [{Re4S4}(TeBr2)3Br7(μ-Br)]2 (2), and a two-dimensional (2D) polymeric compound {Re4S4}Br8 (3). Compound 1 is isotypic to the already known {Re4Te4}(TeBr2)4Br8, while 2 and 3 exhibit a new type of binding of tetrahedral clusters via μ-Br bridges. Compounds were characterized by X-ray single-crystal diffraction, X-ray powder diffraction, and thermal and elemental analyses. In compound 2, two tetrahedral cluster cores {Re4S4}8+ are linked together forming a dimer through two Re-μ-Br-Re bridges. Calculations of the electron localization function (ELF) showed that there is no covalent interaction between rhenium atoms of neighboring clusters. In compound 3, each rhenium atom of the {Re4S4}8+ core is coordinated by three Br ligands: one terminal Br and two bridging μ-Br ligands. As a result, eight bridging bromine atoms link {Re4S4}8+ cluster cores into goffered layers. {Re4S4}Br8 is the new stable rhenium(IV) thiobromide, the first discovered in the Re-S-Br system, along with the already known octahedral rhenium(III) thiobromides Re6S4+xBr10-2x (x = 0-4).