Bioreduction of Cr(VI) using a propane-based membrane biofilm reactor

Environ Sci Pollut Res Int. 2023 Mar;30(12):32683-32695. doi: 10.1007/s11356-022-24146-7. Epub 2022 Dec 5.

Abstract

The strong physiological toxicity of Cr(VI) makes it widely concerned in wastewater treatment. At present, the simplest and harmless method for treating Cr(VI) is known to be biologically reducing it to Cr(III), making it precipitate as Cr(OH)3(s), and then removing Cr(III) by solid separation technology. Studies have shown that Cr(VI) reduction bacteria can use CH4 and H2 as electron donors to reduce Cr(VI). Based on this, in this study, C3H8 was used as the only electron donor to investigate the potential of C3H8 matrix membrane bioreactor in the Cr(VI) wastewater treatment. The experiment was divided into three stages, each of which run stably for at least 30 days, and the whole process run for 120 days in total. The experiment is divided into three stages, each stage runs stably for at least 30 days, for a total of 120 days. With the increase of the Cr(VI) load, the removal rate gradually decreased. In stage 3, when Cr(VI) concentration was 2.0 mg·L-1, the removal rate was reduced from 90% in the first stage to 75%. According to X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis, it is known that Cr(III) is the main product during this process and it is adsorbed on the biofilm as Cr(OH)3 precipitate. During the experiment, the amount of extracellular polymeric substance (EPS) produced by microorganisms increased initially and then decreased, and the amount of polysaccharides (PS) was always more than protein (PN). By analyzing the microbial community structure after inoculating sludge and adding Cr(VI), Nocardia and Rhodococcus dominate the biofilm samples. Chromate reductase, cytochrome c, nitrate reductase, and other functional genes related to chromate reductase increased gradually during the experiment.

Keywords: C3H8; Cr(OH)3; Cr(VI); Membrane bioreactor; Wastewater.

MeSH terms

  • Biofilms
  • Chromium / metabolism
  • Extracellular Polymeric Substance Matrix* / metabolism
  • Oxidation-Reduction
  • Propane*

Substances

  • chromium hexavalent ion
  • Propane
  • Chromium