Observations and models of across-wind flight speed of the wandering albatross

R Soc Open Sci. 2022 Nov 30;9(11):211364. doi: 10.1098/rsos.211364. eCollection 2022 Nov.

Abstract

Wandering albatrosses exploit wind shear by dynamic soaring (DS), enabling rapid, efficient, long-range flight. We compared the ability of a theoretical nonlinear DS model and a linear empirical model to explain the observed variation of mean across-wind airspeeds of GPS-tracked wandering albatrosses. Assuming a flight trajectory of linked, 137° turns, a DS cycle of 10 s and a cruise airspeed of 16 m s-1, the theoretical model predicted that the minimum wind speed necessary to support DS is greater than 3 m s-1. Despite this, tracked albatrosses were observed in flight at wind speeds as low as 2 m s-1. We hypothesize at these very low wind speeds, wandering albatrosses fly by obtaining additional energy from updrafts over water waves. In fast winds (greater than 8 m s-1), assuming the same 10 s cycle period and a turn angle (TA) of 90°, the DS model predicts mean across-wind airspeeds of up to around 50 m s-1. In contrast, the maximum observed across-wind mean airspeed of our tracked albatrosses reached an asymptote at approximately 20 m s-1. We hypothesize that this is due to birds actively limiting airspeed by making fine-scale adjustments to TAs and soaring heights in order to limit aerodynamic force on their wings.

Keywords: GPS tracking; airspeed; dynamic soaring; flight trajectory; wandering albatross; wind shear.

Associated data

  • Dryad/10.5061/dryad.zs7h44j96