Toxicological effects of oxybenzone on the growth and bacterial composition of Symbiodiniaceae

Environ Pollut. 2023 Jan 15:317:120807. doi: 10.1016/j.envpol.2022.120807. Epub 2022 Dec 1.

Abstract

Oxybenzone, a common ultraviolet (UV) filter, is a growing environmental concern due to its ecotoxicological effects. However, the responses of Symbiodiniaceae and their bacterial communities to oxybenzone are largely unknown. In this study, the effects of oxybenzone on Effrenium voratum and Cladocopium goreaui were investigated. The results revealed that sensitivity of Symbiodiniaceae to oxybenzone was species-dependent. 50 μg L-1 of oxybenzone significantly impacted the cell density of C. goreaui, causing a 36.73% decrease. When oxybenzone concentration increased to 500 μg L-1 and 5000 μg L-1, cell division was completely suppressed; meanwhile, chl-a content declined to zero. Compared to C. goreaui, E. voratum had higher resistance to oxybenzone. There was no significant difference in cell density between 50 μg L-1 group and control group. At higher dosage of oxybenzone (500 μg L-1 and 5000 μg L-1), the cell density declined 32.02% and 45.45% compared to the control group, respectively. Additionally, we revealed that the diversity and structure of bacterial community were affected by oxybenzone. Briefly, 500 μg L-1 and 5000 μg L-1 of oxybenzone altered the diversity of bacterial community in C. goreau. Furthermore, the relative abundances of Costertonia, Roseitalea, Rhodopirellula, and Roseobacter were negatively affected by oxybenzone ranging 50 μg L-1 to 5000 μg L-1. Compare to C. goreaui, the bacterial community composition associated with E. voratum was more stable. As revealed by KEGG pathway analysis, oxybenzone affected energy metabolism and inhibited the metabolism of cofactors and vitamins in C. goreaui, while 5000 μg L-1 of oxybenzone significantly altered the carbohydrate metabolism, membrane transport and amino acid metabolism in E. voratum. The changes of bacterial composition may contribute to the variation in algal growth. These results indicated that oxybenzone pollution could injury Symbiodiniaceae, even threaten coral reef ecosystems.

Keywords: Bacterial community; Cell density; Cladocopium goreaui; Effrenium voratum; Oxybenzone.

MeSH terms

  • Animals
  • Anthozoa* / metabolism
  • Bacteria
  • Benzophenones / chemistry
  • Benzophenones / toxicity
  • Coral Reefs
  • Dinoflagellida* / metabolism
  • Ecosystem
  • Energy Metabolism

Substances

  • oxybenzone
  • Benzophenones