Cathode Electrolyte Interphase-Forming Additive for Improving Cycling Performance and Thermal Stability of Ni-Rich LiNixCoyMn1- x- yO2 Cathode Materials

ACS Appl Mater Interfaces. 2022 Dec 14;14(49):54688-54697. doi: 10.1021/acsami.2c15685. Epub 2022 Dec 1.

Abstract

High-capacity Ni-rich LiNixCoyMn1-x-yO2 (NCM) has been investigated as a promising cathode active material for improving the energy density of lithium-ion batteries (LIBs); however, its practical application is limited by its structural instability and low thermal stability. In this study, we synthesized tetrakis(methacryloyloxyethyl)pyrophosphate (TMAEPPi) as a cathode electrolyte interphase (CEI) additive to enhance the cycling characteristics and thermal stability of the LiNi0.8Co0.1Mn0.1O2 (NCM811) material. TMAEPPi was oxidized to form a uniform Li+-ion-conductive CEI on the cathode surface during initial cycles. A lithium-ion cell (graphite/NCM811) employing a liquid electrolyte containing 0.5 wt % TMAEPPi exhibited superior capacity retention (82.2% after 300 cycles at a 1.0 C rate) and enhanced high-rate performance compared with the cell using a baseline liquid electrolyte. The TMAEPPi-derived CEI layer on NCM811 suppressed electrolyte decomposition and reduced the microcracking of the NCM811 particles. Our results reveal that TMAEPPi is a promising additive for forming stable CEIs and thereby improving the cycling performance and thermal stability of LIBs employing high-capacity NCM cathode materials.

Keywords: cathode electrolyte interphase; cycling performance; electrolyte additive; lithium-ion battery; nickel-rich cathode; thermal stability..