Engineering of efficiency-enhanced Cas9 and base editors with improved gene therapy efficacies

Mol Ther. 2023 Mar 1;31(3):744-759. doi: 10.1016/j.ymthe.2022.11.014. Epub 2022 Nov 30.

Abstract

Editing efficiency is pivotal for the efficacies of CRISPR-based gene therapies. We found that fusing an HMG-D domain to the N terminus of SpCas9 (named efficiency-enhanced Cas9 [eeCas9]) significantly increased editing efficiency by 1.4-fold on average. The HMG-D domain also enhanced the activities of non-NGG PAM Cas9 variants, high-fidelity Cas9 variants, smaller Cas9 orthologs, Cas9-based epigenetic regulators, and base editors in cell lines. Furthermore, we discovered that eeCas9 exhibits comparable off-targeting effects with Cas9, and its specificity could be increased through ribonucleoprotein delivery or using hairpin single-guide RNAs and high-fidelity Cas9s. The entire eeCas9 could be packaged into an adeno-associated virus vector and exhibited a 1.7- to 2.6-fold increase in editing efficiency targeting the Pcsk9 gene in mice, leading to a greater reduction of serum cholesterol levels. Moreover, the efficiency of eeA3A-BE3 also surpasses that of A3A-BE3 in targeting the promoter region of γ-globin genes or BCL11A enhancer in human hematopoietic stem cells to reactivate γ-globin expression for the treatment of β-hemoglobinopathy. Together, eeCas9 and its derivatives are promising editing tools that exhibit higher activity and therapeutic efficacy for both in vivo and ex vivo therapeutics.

Keywords: Cas9; HMG-D; Pcsk9; base editors; double-strand DNA binding domain; epigenetic regulation; gene therapy; genome editing; β-hemoglobinopathy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CRISPR-Associated Protein 9* / genetics
  • CRISPR-Associated Protein 9* / metabolism
  • CRISPR-Cas Systems*
  • Gene Editing
  • Genetic Therapy
  • Humans
  • Mice
  • Proprotein Convertase 9 / genetics
  • Proprotein Convertase 9 / metabolism
  • gamma-Globins / genetics

Substances

  • CRISPR-Associated Protein 9
  • PCSK9 protein, human
  • Proprotein Convertase 9
  • gamma-Globins