Effects of receiving position and shell material on in-band full-duplex underwater communications' self-interference signal

J Acoust Soc Am. 2022 Nov;152(5):3049. doi: 10.1121/10.0015229.

Abstract

Despite the recent intensive research on adaptive algorithms for self-interference (SI) cancellation (SIC) in in-band full-duplex (IBFD) underwater acoustic communication (UWAC), there has been relatively little exploration of how the IBFD-UWAC modem shell affects the SI signal. This paper analyzes the effects of the shell material and the near-end receiver position on the SI signal. The analysis is done with a two-dimensional finite-element model in a free-field simulation environment, which combines the differential equation of motion and the time-dependent solver. The SI signal strength around the modem shell in the far-field conditions is obtained. The simulation and pool experiment results both show that (i) the strength of the received SI signal is lowest when the near-end receiver is on a line extending from the shell's geometric center perpendicularly to its central axis and (ii) a shell material with a high elastic coefficient is more conducive to suppressing the SI signal. A pool experiment showed that changing the spatial position of the near-end receiver and the shell material from aluminum to stainless steel enhanced the SIC performance of the IBFD-UWAC system by at least 12 and 4 dB, respectively.