Optimizing phosphate fertilizer input to reduce phosphorus loss in rice-oilseed rape rotation

Environ Sci Pollut Res Int. 2023 Mar;30(11):31533-31545. doi: 10.1007/s11356-022-24133-y. Epub 2022 Nov 30.

Abstract

Identifying the major sources and critical periods of P loss from agricultural fields provides important guidance for reducing P loss. A rice-oilseed rape rotation with no P fertilization (NP, control), medium P fertilization (MP, 90 kg P2O5 ha-1 season-1), and high P fertilization (HP, 180 kg P2O5 ha-1 season-1) was conducted from 2019 to 2021 in the middle Yangtze River Basin. Runoff and leaching P losses were measured simultaneously using runoff event monitoring and a percolation device. Applying P fertilizer increased the P concentration in the field ponding water and percolation water of the rice-oilseed rape rotation. During the rice growing season, total P (TP), dissolved P (DP), and particulate P (PP) concentrations in the field ponding water and percolation water peaked 1 day after P was applied, and then decreased rapidly. After 10 days of fertilization, P concentration in the field ponding water of the MP treatment decreased to a minimum and stabilized, while the HP treatment extended this period to 20 days. The highest P concentration in percolation water was observed at the first sampling during the oilseed rape season, and then it continued to decrease. Inputting P fertilizer increased P loss by 55.0-109.9% compared to the NP treatment, with annual P losses of 0.89-1.10 kg P ha-1, of which runoff loss accounted for 61.7-62.9%. Fertilization and precipitation resulted in varied P loss within and between seasons. Runoff from heavy precipitation during the rice season was the main source of P loss, while PP accounted for 54.7-77.6% of runoff P loss. The strong utilization of soil P by rice resulted in a lower demand for exogenous P fertilizer than oilseed rape. Excessive P input increased the soil P surplus and vertical migration. Therefore, reducing rice season P fertilizer inputs to achieve annual P balance in rice-oilseed rape rotation can effectively reduce soil P surplus and loss while ensuring crop P demand, and the initial 10 d after fertilization in the rice season was a critical period for reducing P runoff loss.

Keywords: Leaching; Phosphorus loss; Rice-oilseed rape rotation; Runoff; Soil phosphorus surplus; Water phosphorus dynamics.

MeSH terms

  • Agriculture / methods
  • Brassica napus*
  • Fertilizers / analysis
  • Nitrogen / analysis
  • Oryza*
  • Phosphates
  • Phosphorus
  • Soil

Substances

  • Phosphorus
  • Phosphates
  • Fertilizers
  • Soil
  • Nitrogen