Electron and ion transport behavior of Vanadium based MXene induced by pressure for Lithium ion intercalated electrodes

J Colloid Interface Sci. 2023 Mar:633:207-217. doi: 10.1016/j.jcis.2022.11.105. Epub 2022 Nov 24.

Abstract

Pressure, analogous with temperature and composition, is other meaningful variant for tuning the structure-activity properties of layered materials. In-situ high-pressure electrical results discover that Vanadium based MXene (V2CTx MXene) conductivity is increased by one order of magnitude from ambient to 10.4 GPa, and then the conductivity is still fixated on meeting growth as pressure releasing. Increased carrier concentration due to denser compactness is the most important factor in improving sample conductivity. Furthermore, abundant of V2CTx samples after preloading different pressures are prepared by the mean of the double-anvil hydraulic press for the first time, and results of increased conductivity were reproduced at ambient conditions. The first-principles calculation of V2C (non-functional group), V2CF, V2CO, and V2COH explains for the lattice expansion by tracing emotion of different function groups upon decompression. Electrochemical results obtain that once forming V2CTx MXene anode rapidly quenched from 2.0 GPa in hydraulic press shows better performance, obviously weakening electric polarization and increasing Li-ion transport rate due to its proper interlaminar densification and improved conductivity. This work opens up a new, simple, and universal approach to develop MXene materials with superior electrical and electrochemical properties, as well as expanding the potential applications for energy storage.

Keywords: Electrical transport; Lithium-ion; Pressure; V2C.