Optimization of the Sound Absorption Coefficient (SAC) from Cellulose-Silica Aerogel Using the Box-Behnken Design

ACS Omega. 2022 Nov 10;7(46):41968-41980. doi: 10.1021/acsomega.2c03734. eCollection 2022 Nov 22.

Abstract

Noise pollution, which has become a major environmental issue in urban areas, can be minimized using acoustic insulation derived from cellulose-silica aerogel. The raw materials required in the process include waste newspaper-based cellulose, geothermal silica, and NaOH/ZnO solution. Therefore, this study investigates the effect of cellulose, silica, and ZnO concentrations on optimizing the sound absorption coefficient (SAC) using the Box-Behnken design (BBD). The results showed that the optimum conditions were obtained at 39.8578 wt % cellulose, 16.5428 wt % silica, and 0.5684 wt % ZnO. The impedance test for the cellulose aerogel and cellulose-silica aerogel showed SAC values of 0.59 and 0.70, respectively, and were characterized by XRD, FTIR, BET-BJH, SEM-EDX, and TG. The results of XRD and FTIR data indicate that the product was cellulose-silica aerogel, and the SEM micrographs showed that silica particles were attached to the fiber surface. Furthermore, type IV isotherms were observed in the cellulose-silica aerogel, typical of mesoporous materials. The presence of silica strengthened the aerogel structure, improved its thermal stability, and increased the surface area but decreased its pore size.