Large-scale coherent Ising machine based on optoelectronic parametric oscillator

Light Sci Appl. 2022 Nov 25;11(1):333. doi: 10.1038/s41377-022-01013-1.

Abstract

Ising machines based on analog systems have the potential to accelerate the solution of ubiquitous combinatorial optimization problems. Although some artificial spins to support large-scale Ising machines have been reported, e.g., superconducting qubits in quantum annealers and short optical pulses in coherent Ising machines, the spin stability is fragile due to the ultra-low equivalent temperature or optical phase sensitivity. In this paper, we propose to use short microwave pulses generated from an optoelectronic parametric oscillator as the spins to implement a large-scale Ising machine with high stability. The proposed machine supports 25,600 spins and can operate continuously and stably for hours. Moreover, the proposed Ising machine is highly compatible with high-speed electronic devices for programmability, paving a low-cost, accurate, and easy-to-implement way toward solving real-world optimization problems.